UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version Syllabus	Paper	•
		GCE A LEVEL – October/November 2010 9702	23	
1	(a) allow	$v 0.05 \mathrm{mm} \rightarrow 0.15 \mathrm{mm}$	B1	[1]
	(b) allow	$0.25 \mathrm{s} ightarrow 0.5 \mathrm{s}$	B1	[1]
	(c) allow	$\nu 8N \rightarrow 12N$	B1	[1]
	ignoi	e number of significant figures		
2	crystallin	long range order / orderly pattern	B1	
	polymer:	(lattice) repeats itself (1) long chain molecules / chains of monomers some cross-linking between chains / tangled chains (1)	B1	
	amorpho	us: disordered arrangement of molecules / atoms / particles any ordering is short-range (1)	B1	
	(three 'B	marks plus any other 2 marks)	B2	[5]
3	adjust c.r measure frequenc	microphone / (terminals of) loudspeaker to Y-plates of c.r.o. c.o. to produce steady wave of 1 (or 2) cycles / wavelengths on screen length of cycle / wavelength λ and note time-base b y = 1 / λb b is measured as s cm ⁻¹ , unless otherwise stated)	B1 B1 M1 A1	[4]
	(if statem	ent is 'measure T, f = $1/T$ then last two marks are lost)		
4	(a) acce	ptable straight line drawn (touching every point)	B1	[1]
	• •	listance fallen is not <i>d</i> he distance fallen plus the diameter of the ball	C1 A1	[2]
	('d is	not measured to the bottom of the ball' scores 2/2)		
		diameter: allow 1.5 ± 0.5 cm (accept one SF) no ecf from (a)	A1	[1]
		gradient = 4.76, ± 0.1 with evidence that origin has not been used gradient = $g / 2$ $g = 9.5 \text{ m s}^2$	C1 C1 A1	[3]

Page 3			Mark Scheme: Teachers' version Syllabus	Paper	
			GCE A LEVEL – October/November 2010 9702	23	
(a)	(i)	Fig.	5.2	B1	[1]
	(ii)	Fig.	5.3	B1	[1]
(b)	kine	etic er	nergy increases from zero then decreases to zero	B1	[1
(c)	(i)	ΔE_{P}	= $mg\Delta h / mgh$ = 94 × 10 ³ × 9.8 × 2.6 × 10 ² using g = 10 then −1	C1	
			= 0.024 J	A1	[2
	(ii)	eithe	$\begin{array}{ll} r & 0.024 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 & or & \frac{1}{2} k d^2 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 - \frac{1}{2} k d^2 \\ 0.012 = \frac{1}{2} k \times d^2 & k d^2 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 \\ d &= 0.018 \text{m} & d &= 0.018 \text{m} \end{array}$	C1 C1	
			$= 1.8 \mathrm{cm}$ = 1.8 cm	A1	[3
• • •			o (or more) waves meet (at a point) t) displacement is (vector) sum of individual displacements	B1 B1	[2
(b)	(i)	590	ax / D (if no formula given and substitution is incorrect then 0/3) × 10 ⁹ = (1.4 × 10 ³ × x) / 2.6 .1 mm	C1 C1 A1	[3
	(ii)	1. 18	30° (allow π if rad stated)	A1	[1
		in	t maximum, amplitude is 3.4 units and at minimum, 0.6 units tensity ~ amplitude ² allow $I \sim a^2$ at a state of the second s	C1 C1	
			32	A1	[3
(a)	(i)	path	: reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates	B1 B1	[2
	(ii)	1 . (F	=) <i>E.g</i>	B1	[1
		2 . (<i>t</i>	=) L / v	B1	[1
(b)	(i)	syste provi	momentum of a system remains constant or total momentum of a em before a collision equals total momentum after collision ided no external force acts on the system not accept 'conserved' but otherwise correct statement gets 1/2)	M1 A1	[2
	(ii)	(∆p =	=) <i>EqL / v</i> allow ecf from (a)(ii)	B1	[1
(iii)	eithe or	er charged particle is not an isolated system so law does not apply system is particle and 'plates' equal and opposite Δp on plates / so law applies	M1 A1 (M1) (A1)	

ΡM	Т
	•

	Page 4	Mark Scheme: Teachers' versionSyllabusGCE A LEVEL – October/November 20109702		s Paper	
	Fage 4			<u>- 23</u>	
8		er $P = V^2 / R$ or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$		C1	
		$\begin{array}{ll} 230^2 / 1200 & \text{or} & R = 230 / 5.22 \\ 4.1 \Omega & = 44.1 \Omega \end{array}$		M1 A0	[2]
		= <i>ρL / Α</i> = (1.7 × 10 ⁸ × 9.2 × 2) / (π × {0.45 × 10 ³ }²) = 0.492Ω		C1 M1 A0	[2]
	-			C1 C1 A1	[3]
	mor	s power dissipated in the heater / smaller p.d. across heater re power loss in cable / current lower le becomes heated / melts y two sensible suggestions, 1 each, max 2)	/	B1 B1	[2]
9		emits $\alpha\mbox{-particles}$ or $\beta\mbox{-particles}$ and/or $\gamma\mbox{-radiation}$ a different / more stable nucleus		B1 B1	[2]
	(b) (i) fluct	tuations in count rate (not 'count rate is not constant')		B1	[1]
	(ii) no e	effect		B1	[1]
	(iii) if the eithe or	e source is an α -emitter er α -particles stopped within source (and gain electrons) α -particles are helium <u>nuclei</u>		B1 B1	[2]
		w 1/2 for 'parent nucleus gives off radiation to form daughte	r nucleus'		[—]